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Abstract

We propose aprobabilistic, hierarchical, and discrimi-
nant (PHD) framework for fast and accurate detection of
deformable anatomic structures from medical images. The
PHD framework has three characteristics. First, it inte-
grates distinctive primitives of the anatomic structures at
global, segmental, and landmark levels in a probabilistic
manner. Second, since the configuration of the anatomic
structures lies in a high-dimensional parameter space, it
seeks the best configuration via a hierarchical evaluation
of the detection probability that quickly prunes the search
space. Finally, to separate the primitive from the back-
ground, it adopts a discriminative boosting learning imple-
mentation. We apply the PHD framework for accurately
detecting various deformable anatomic structures from M-
mode and Doppler echocardiograms in about a second.

1. Introduction

Rapid and accurate detection of deformable anatomic
structures from medical images is a difficult task. The main
reason is that these anatomic structures are deformable, ren-
dering a high-dimensional configuration space to explore.
Second, the anatomy appearance variation is large, result-
ing in a complex model. Finally, typical speed and accu-
racy requirements for this type of system pose additional
challenges.

To illustrate the problem, consider the deformable
anatomic structures in M-mode and Doppler echocardio-
grams [5] shown in Figure1. The M-mode echocardio-
gram is a spatial-temporal image slice of the human heart
captured by an ultrasound device. Unlike regular B-mode
echocardiography that uses multiple interrogation beams,
the M-mode echocardiography uses a single interrogation
beam and hence achieves an enhanced temporal and spatial
(along the single line though) resolution. It is often used
in clinical practices to assess the functionality of anatomic
structures inside the heart such as left ventricle and aortic

root as its high image quality allows accurate measurement
and captures subtle motion. The Doppler echocardiograhy,
which is widely used to assess cardiovascular functional-
ities such as valvular regurgitation and stenosis, employs
the Doppler effect to determine whether structures (usu-
ally blood) are moving towards or away from the ultra-
sound probe, and its relative velocity. The acquired Doppler
echocardiogram is a velocity-time image.

(a) (b)

(c) (d)
Figure 1. (a) M-mode echocardiogram and (b,c,d) Doppler
echocardiogram: (b) mitral inflow, (c) aortic regurgitation, (d) tri-
cuspid regurgitation.

As shown in the Figure1, from the M-mode echocar-
diogram, we detect (a) a cohort of five/four landmarks on
the lines corresponding to the end of diastole (ED)/the end
of systole (ES); from the Doppler echocardiogram, we de-
tect (b) triangle(s) from a mitral inflow image, (c) quadrilat-
eral(s) from an aortic regurgitation image, and (d) curve(s)
from a tricuspid regurgitation image. Note that the ED/ES
line position in a M-mode image and the baseline position
y0 in a Doppler image are givena priori. Throughout the
paper, we use the following parameterizations:

θa,ED = (y1, y2, y3, y4, y5), θa,ES = (y1, y2, y3, y4), (1)

θb = (xLR, y0, xPK , yPK , xRR, y0), (2)
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θc = (xLR, y0, xLP , yLP , xRP , yRP , xRR, y0), (3)

θd = (xLR, y0, xPK , yPK , xRR, y0, α1, ..., αn). (4)

In (1), yi is they-coordinate of theith landmark position. In
(2), we parameterize three points of left root (LR), right root
(RR), and peak (PK) using four variables as the baseline is
fixed. In (3), we parameterize four points of left root (LR),
right root (RR), left peak (LP) and right peak (RP) with six
variables. In (4), we first align three points (LR, RR, and
PK) and then usen PCA coefficients to model the curve
variation. Typically we choosen = 3, leading to a 7-D
parameterization.

The use of generative models/energy minimization
methods to detect deformable structures is widely studied in
the literature [3, 6, 11, 12, 16]. Classical deformable mod-
els [11, 12] seek a parameterized curve that minimizes the
cost function based on the gradient operator, assuming that
the edge defines the curve. Felzenzwalb [6] represented a
deformable shape using triangulated polygons and fitted the
shape via energy minimization. Sclaroff and Liu [16] used
model-based region grouping to find a deformable template
while Coughlan and Ferreira [3] used loopy belief propaga-
tion. The main disadvantage of using the above generative
models lies in their need for initialization and slow fitting
speed.

In this paper, we pursue a discriminative approach. Mo-
tivated by the success of classifier-based detector for rigid
object [19, 20], which is able to handle the large appear-
ance variation manifested by the object, we formulate the
deformable structure detection problem as a classification
task. Given an imageI , we aim to discover the best con-
figuration θ̂ (or several isolated ones) that maximizes (or
locally maximizes) the detection probabilityp(O|I , θ) =
p(O|I (θ)), i.e.,

θ̂ = argθ max p(O|I , θ), (5)

whereI (θ) is a warped patch extracted from the imageI
using the parameterθ. Due to nonrigid deformation, the
warping computation becomes a bottleneck. In the M-mode
experiment, if we use a global detector trained based on the
non-rigidly warped images, during testing typically for an
ED line there are over1010 warping possibilities. Perform-
ing all these warping operations alone takes more than two
months on a standard PC!

In section2, we propose aprobabilistic, hierarchical,
and discriminant(PHD) framework for detecting anatomic
structures from medical images. The PHD framework prob-
abilistically integrates distinctive primitives manifested by
the anatomic structure at global, segmental, and landmark
levels to give an accurate account of the object. Because
the configuration of the anatomic structures lies in a high-
dimensional parameter space, the PHD framework seeks the

best configuration via a hierarchic evaluation of the detec-
tion probability that quickly prunes the search space. In-
spired by that argument that “visual processing in cortex is
classically modeled as a hierarchy of increasingly sophis-
ticated representations” [15], we build up the hierarchy in
a simple-to-complex fashion. To separate the primitives
from the background, the PHD framework implements the
discriminative boosting learning. In section3, we applied
the proposed framework to detecting various deformable
anatomic structures such as a cohort of landmarks, trian-
gles, quadrilaterals, and curves from M-mode and Doppler
echocardiograms in about a second per structure. Section4
concludes the paper.

2. The PHD framework

2.1. Probabilistic

Let P denote the appearance for a primitive derived from
the image. The primitive can be a landmarkL, a local seg-
ment/“part”R, a perfectly warped global templateT. Here
the term segment/“part” loosely means some intermediate
representation between the landmark and global template;
in other words, the segment/“part” uses a partial parameter-
ization of the overall parameterθ. Each primitiveP is pa-
rameterized byθP ⊆ θ. Given an imageI and its associated
primitives {Pi; i = 1, . . . , NP }, the PHD framework, as-
suming the conditional independence among the primitives,
aims to discover the best configurationθ̂ that maximizes
the detection probabilityp(O|I , θ) defined as the product of
primitive detection probabilities:

p(O|I , θ) =
NP∏

i=1

p(O|Pi, θ
P,i), (6)

whereNP is the number of primitives. Equivalently,

p(O|I , θ) =
NL∏

i=1

p(O|Li, θ
L,i)

NR∏

j=1

p(O|Rj , θ
R,j)p(O|T, θ).

(7)
whereNL andNR are the numbers of landmarks and seg-
ments, respectively, andNP = NL + NR + 1. Note that
there is only one perfectly aligned global template.

Part-based object representation [1, 4, 7] has recently
gained prevalence. The main idea is to put together multi-
ple local parts into a spatial arrangement using a generative
model. Combining the generative and discriminative mod-
els in a part-based representation for object detection is also
proposed in [10, 21]. Garg et al. [9] fused a global ICA
representation with part-based SNoW detectors for car de-
tection. Mohanet al. [13] first detected the four components
of the human body: the head, legs, left arm, and right arm
and then further classified these components annexed in the
proper geometric configuration with a second classifier as



either a pedestrian or not. The classifiers trained in [13] are
based on SVM. However, the above approaches hardly meet
the speed requirement posed by medical applications. Also,
they tend to measure the detection performance by detec-
tion and false alarm rates; but we need to derive accurate
clinically meaningful measurements.

For the M-mode case, we learned five landmark detec-
tors, one for each landmarkLi(yi) and one global detec-
tor for warped templateT(y1, y2, ..., y5) (also called warp-
ing detector). For the Doppler case, we learned 2-3 land-
mark detectors (two root detectors and/or one peak de-
tector), one “part” detector, and one global detector for
warped imageT(θ). The “part” detector used is a box de-
tector that finds the bounding box containing the Doppler
structure. For example, in the Doppler aortic regurgita-
tion case, the parameterθR associated with the box is
θR = (xLR, y0, yLP , xRR, y0).

2.2. Hierarchical

Using the product rule in (8) allows an efficient explo-
ration of the parameter space: If any term in the product is
zero (or close to zero), then the overall detection probability
is zero (or close to zero). This implies the following strat-
egy for computational efficiency: if one of the classifiers
fails to recognize the input as positive, we can simply stop
evaluating the remaining classifiers.

arg max
θ

p(O|I , θ) =
NP∏

i=1

p(O|Pi, θ
P,i)

subject to p(O|Pi, θ
P,i) > εi, (8)

where eachεi is a pre-specified threshold close to zero.
Each classifier defines a “feasible” region in which lies the
parameter. The overall “feasible” region is the intersection
of the “feasible” regions of all classifiers. We seek the max-
imizing configuration in the overall “feasible” region. We
implement the above space pruning idea using a progressive
detector hierarchy illustrated in Figure2. The progressive
detector hierarchy consists of multiple layers of detectors.
Each layer targets detecting a particular primitive or prun-
ing the relevant space to find the “feasible” region.

The proposed detector hierarchy seems similar to the de-
tector cascade [20]. However, there exists a significant dif-
ference between them: the hierarchy divides the parameter
space for fast exploration of the full space while the cascade
always explore the full space. As argued earlier, blindly
applying the cascade for detecting deformable structure is
computationally prohibitive!

Following [15], we adopt the principle of using the sim-
ple models first followed by complex models when design-
ing the progressive detector hierarchy . There are two types
of complexity: one is model complexity and the other is

computational complexity. The model complexity of a bi-
nary classifier is determined by the shape of decision bound-
ary. The computational complexity depends on both the
model complexity and scanning procedure. For example,
the lef/right root detector is simple to learn and needs only
a line scan; on the other hand the warping detector is diffi-
cult to learn, rendering a complex model, and it takes longer
to search. To build a detector hierarchy that supports fast
evaluation, we start with simple models and progressively
move to complex ones in terms of computation. Table1
lists the primitive detectors (along with the number of weak
classifiers) used in the progressive detector hierarchies for
detecting anatomic structures in the experiments.

2.3. Discriminant

We followed [19] to learn a probabilistic boosting tree
(PBT) as a binary object detector. The PBT trains a binary
decision tree, with each node of the tree being a strong clas-
sifier that combines multiple weak classifiers via adiscrim-
inant boosting procedure [8]. Because we based the weak
classifier on the Haar-like local rectangle features [14, 20],
whose rapid evaluation is enabled via the means of integral
image, the PBT operates as a feature selector. The PBT also
has early exits for fast negative rejection. We also need to
compute the posterior probability. A nice property of the
PBT is that it allows exactly computing the posterior prob-
ability of being positive. Refer to [19] for more details on
PBT.

To train the detectors in all layers of the hierarchy,
we need positives and negatives. Generating positives is
straightforward by using the ground truth annotation (with
a slight perturbation). When generating negatives, we take
into account the interaction between layers especially when
training the detector in the later layers of the hierarchy. For
example, when generating negatives for the 2nd layer box
detector for quadrilateral detection in the aortic regurgita-
tion image, we used only the positives values ofxLR and
xRR that pass the 1st layer root detectors; for theyLP vari-
able, we used those a few pixels away from the ground truth
position.

2.4. Mode selection

The candidates close to the ground truth position (or
highly confusing spots) are likely to fire up due to smooth-
ness, which renders a large number of candidates. Option-
ally, we may run a mode selection to further reduce the
search space by finding isolated local maxima. Below, we
illustrate the mode selection scheme using the 1-D exam-
ple. Given a probability response line, we first smoothed
it to find all local maxima. After ranking the local max-
ima based on their responses, we then performed the fol-
lowing operations to find isolated modes. Let the set of



M-mode Mitral inflow Aortic reg. Tricuspid reg.
structure a cohort of landmarks triangle quadrilateral curve

1st layer det. indep. landmarks box left root & right root left root & right root
parameter (yi) (xLR, yP K , xRR) (xLR) & (xRR) (xLR) & (xRR)
# of WCs ∼400 299 61 & 92 243&274

2nd layer det. warping peak box box
parameter (y1, . . . , y5) (xP K , yP K) (xLR, yLP , xRR) (xLR, yP K , xRR)
# of WCs ∼1000 103 192 739

3rd layer det. NA NA left peak warping
parameter - - (xLP , yLP ) (xLR, xP K , yP K , xRR, α1, α2, α3)
# of WCs - - 54 550

4th layer det. NA NA warping NA
parameter - - (xLR, xLP , yLP , xRP , yRP , xRR) -
# of WCs - - 316 -

Table 1.The list of primitive detectors in the progressive detector hierarchy.

(a) (b)
Figure 2.(a) Graphical illustration of progressive detector hierarchy. (b) A real example of applying the PHD framework for detecting
curves in the tricuspid regurgitation image.

local maxima be{y1, y2, ..., yM}, L the final list of se-
lected models initialized asL = ∅, andλ a pre-specified
threshold. Form = 1, 2, . . . , M , if the minimum distance
minx∈L(yn, x) ≥ λ, then add it toL: L = L ∪ {ym};
otherwise continue. Figure3(a) displays a typical proba-
bility response map for a landmark and its isolated modes
(marked as red circles). For a high-dimensional case, a sim-
ilar strategy can be designed.

2.5. Image warping

One essential part is to align the global image appear-
ance to place the landmarks in the canonical positions. For
2-D image warping, we used the piecewise local rectangle
warping; other methods like thin plate spline (TPS) warping
[2] can be used too. Figure3(f,g) displays several example
images after 2D warping of the aortic and tricuspid regurgi-
tation images.

In the M-mode case, we need only the 1-D warping as
the scale is fixed along the x-axis. Figure3(b,c) illustrates
the warping process. In Figure3(b), two synthetic signals
with the peaks located at different positions are displayed
and in Figure3(c), the peaks of the two signals are roughly
aligned after warping.

We study the 1-D counterpart of TPS warping. Assum-
ing that in the query image, the landmarks are located at
{y1, y2, . . . , yN} while in the canonical template, theN
landmarks should be positioned at{z1, z2, . . . , zN}. We
seek a warping function (or interpolator)y = f(z) that sat-
isfiesyn = f(zn) by assuming

f(z) =
∑

n=1:N

cnφ(|z − zn|) + z · d, (9)

where φ(r) = r2 log(r) is the TPS function and
{c1, c2, . . . , cN , d} are coefficients. Figure3(d,e) displays
several pairs of images before and after warping. Note the
significant variations in the landmark positions and the im-
age intensities.

To determine the coefficients, we express the conditions
{yn = f(zn); n = 1, 2, . . . , N} in a matrix form:

[
y
d

]
=

[
Φ z
0T 1

] [
c
d

]
, (10)

where y = [y1, . . . , yN ]T, z = [z1, . . . , zN ]T, c =
[c1, . . . , cN ]T, andΦ = [φ(|zi − zj |)]. Solving the above
linear system yields a unique solution{c , d}, which stays
fixed and is hence pre-computable. Another trick to accel-
erate evaluating (9) is to pre-compute a table of valuesφ(r)
for all possible integersr within a proper range.

3. Experimental results

3.1. M-mode echocardiogram

The M-mode echocardiogram, from which the ventric-
ular measurements are derived, is captured from two win-
dows [5]: parasternal long axis and parasternal short axis.
In each case, the ultrasound scan line first penetrates the
chest wall, then the right ventricle, and finally the left ven-
tricle. Seven measurements can be obtained from the M-
mode echo:

1. RV internal dimension in diastole (RVIDd);
2. Interventricular septum thickness in diastole (IVSd);
3. LV internal dimension in diastole (LVIDd);
4. LV posterior wall thickness in diastole (LVPWd);
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Figure 3. (a) Graphical illustration of mode selection. (b,c)
Graphical illustration of 1D TPS warping: (b) Two signals before
warping and (c) two signals after warping. (d,e) M-mode Image
examples before warping (the left five) and after warping (the right
five) for the (d) ED and (e) ES lines. (f,g) Doppler image examples
after warping of (f) aortic regurgitation and (g) tricuspid regurgi-
tation.

5. Interventricular septum thickness in systole (IVSs);

6. LV internal dimension in systole (LVIDs); and

7. LV posterior wall thickness in systole (LVPWs).

These measurements are derived only on the lines corre-
sponding to the end of diastole (ED) and end of systole
(ES), whose positions are either provided beforehand or
reliably estimated based on the electrocardiogram (ECG).
Therefore, the image analysis task is to accurately detect
a cohort of landmarks on the given ED and ES lines: five
landmarks on an ED line and four landmarks on an ES line.

We collected a library of 89 M-mode images that were
annotated by an experienced sonographer. Depending on
the heart rate and temporal sampling rate, each image con-
tains 1-8 cardiac cycles, with each cardiac cycle contribut-
ing a pair of ED/ES lines (some might have missing ED or
ES line). In total, there are 284 ED lines and 278 ES lines in
the database. We randomly selected 70 images for training
and the remaining 19 for testing and repeated this random
selection three times for thecross validationpurpose.

Since the heart rate and the temporal sampling rate are
known, we normalized the size of each image in such a way
that each cardiac rate spans about the same size (125 pixels
or so) in thex-direction. We also normalized they-direction
such that each pixel corresponds to 0.5mm in depth; we kept

400 pixels to cover a range from zero to 20cm. After nor-
malization, we also padded the images (5 pixels in each di-
rection) for searching convenience and used the cyan color
detector to remove the ECG signal line. Figure4(a,b) shows
an example of size normalization.

(a) (b)
Figure 4.M-mode echocardiogram: (a) the original image and (b)
the size-normalized image. Note that the sizes of the original and
normalized images are in proportion.

The prior search ranges for landmarks on the normalized
domain are empirically determined based on the database.
To learn the local classifier, we cropped image patches of
size51×51 around the ground truth positions (there is a±1
perturbation) as positives and those 5 pixels away but within
the search range as negatives. After learning, the PBTs
for landmarks use about 400 weak classifiers. To learn the
global detector, we again perturbed all landmarks around
the ground truth positions and warped them to canonical
positions in the template of size75 × 51 to generate posi-
tives. Negatives were similarly generated by forcing at least
one landmark 5 pixels away from the true positions. Here
the landmark positions must be positives from the 1st layer
landmark detector. The PBTs for global templates include
about 1000 weak classifiers.

During detection, we kept a maximum of five top modes
for each landmarks, resulting in, on average, about 1000
image warping per ED/ES line. Speed wise, it takes about
300ms to process one image containing about 3 cardiac cy-
cles on a standard PC with 3GHz Xeon CPU and 3GB mem-
ory: about 100ms on size normalization, 150ms on local
detection, and 50ms on global detection. If an image con-
tains multiple cardiac cycles, we computed the median of
measurements from multiple cycles as the final output.

We used the absolute errors in landmark localization
and measurements to calibrate the performance. Table2(a)
tallies the experimental results by pooling together three
batches of testing sets. Collectively, there are 185 ED lines
and 187 ES lines for testing, and 57 data points per measure-
ment. From Table2, we observe that (i) all results for differ-
ent landmarks are quite consistent except a few outliers; (ii)
the overall median absolute error in landmark localization is
0.0570cm and the mean error is 0.0625cm, amounting to a
subpixel error in the original image; and (iii) as we take the
median for the measurements, they have less outliers as re-
flected by their smaller standard deviations. Figure5 shows
the detection results: The detected landmarks are very close
to the true ones despite significant variances in landmark



positions and image intensities. Our preliminary clinical
evaluation shows a good correlation between the detected
results and a consensus ground truth.

For comparison, we implemented the approach that finds
the landmarks independently. Table2(b) tabulates the re-
sults, which are much worse than those in Table2(a). In
terms of computation, it is faster than the proposed ap-
proach, taking about 50ms less to process one image.

(Unit: cm) L1d L2d L3d L4d L5d
median 0.0570 0.0326 0.0586 0.0669 0.0586
mean 0.0698 0.0427 0.0531 0.0905 0.0715

std. dev. 0.1592 0.0526 0.0593 0.1129 0.0804
RVIDd IVSd LVIDd LVPWd

median 0.0359 0.0628 0.0669 0.0669
mean 0.0679 0.0640 0.0863 0.0841

std. dev. 0.1200 0.0497 0.0816 0.0879
L1s L2s L3s L4s

median 0.1172 0.0807 0.2278 0.1172
mean 0.2437 0.1906 0.4055 0.1835

std. dev. 0.4543 0.3610 0.5703 0.2367
IVSs LVIDs LVPWs

median 0.0570 0.0586 0.0628
mean 0.0596 0.0648 0.0785

std. dev. 0.0532 0.0708 0.0819

(a)

(Unit: cm) L1d L2d L3d L4d L5d
median 0.1757 0.1256 0.0807 0.2008 0.0807
mean 0.3864 0.2959 0.2675 0.3844 0.1841

std. dev. 0.5413 0.6303 0.7109 0.5838 0.4155
RVIDd IVSd LVIDd LVPWd

median 0.1614 0.1339 0.1883 0.1464
mean 0.2779 0.3459 0.5755 0.2678

std. dev. 0.3754 0.6089 0.9248 0.3580
L1s L2s L3s L4s

median 0.1614 0.1339 0.1883 0.1464
mean 0.2779 0.3459 0.5755 0.2678

std. dev. 0.3754 0.6089 0.9248 0.3580
IVSs LVIDs LVPWs

median 0.1506 0.2422 0.2278
mean 0.2850 0.4588 0.4071

std. dev. 0.4551 0.5457 0.5296

(b)

Table 2.The absolute testing errors in landmark localization and
measurements obtained by (a) the proposed algorithm and (b) the
local approach.

3.2. Doppler echocardiogram

The goal is to derive automated measurements of
Doppler spectra of the blood flow in the heart. The algo-
rithm developed should be robust and general enough so
that it performs well despite the large variation of spectral
shapes observed in everyday clinical practice. There are
only a few methods in the literature focused on the veloc-
ity envelop extraction problem [17, 18]. All these method
relied on image processing/filtering techniques, whose ro-
bustness is not guaranteed.

Specifically, we dealt with three types of flows so far:
(a) mitral inflow, (b) aortic regurgitation, and (c) tricuspid
regurgitation. The same framework can be easily applied
for detecting doppler structures associated with other types
of flows, such as tricuspid inflow, mitral outflow, pulmonic
regurgitation, given that they possess similar visual patterns
to those we processed.

The inflow patterns through the mitral and tricuspid
valves are similar, consisting of the E and A waves. A trace
of the envelope will be required as well as identification of
the peaks and the trough of the structure. For our purpose,
it is sufficient to represent the E/A wave envelope using a
triangle [5] (p. 170). The regurgitation jets from aortic and
pulmonary valves have similar appearance. The measure-
ments do not use the full trace but only a fit to a straight line
of the sloping part of the spectrum [5] (p. 300). Neverthe-
less, we decided to detect the quadrilateral. The regurgita-
tion jets from the mitral and tricuspid valves have a different
appearance from aortic and pulmonary valves. The trace of
these regurgitant jets is complicated when portions of the jet
are not visible which is quite common [5] (p. 163).

We collected 153 mitral inflow, 43 aortic regurgitation
and 147 tricuspid regurgitation images for training and 46
mitral inflow, 6 aortic regurgitation and 28 tricuspid regurgi-
tation images for testing. The number of doppler structures
varies significantly from image to image: 2 to 20 triangles
per image, 1 to 7 quadrilaterals per image, and 3 to 5 curves
per image. Table3 provides the data statistics of our train-
ing and testing data sets.

We performed the size normalization only along thex-
direction to compensate the discrepancies in the heart rate
and the temporal sampling rate. After normalization, we
also padded the images (50 pixels in each direction) and
removed the ECG signal line.

The list of primitive detectors along with their number
of weak classifiers is given in Table1. As expected, the
root detector is the simplest while the warping detector is
the most complicated. When designing the hierarchy, the
main concern is the computation. Landmark/root scanning
is both reliable (except the mitral inflow case) and fast, so
we used it as the first layer. Since the warping is the most
time consuming part, we always left it as the last layer, if
used. In addition, mode selection is always turned on to
accelerate the computation.

In order to further reduce the number of warping candi-
dates in testing, we stored a code book of all possible warp-
ing possibilities (using the relative parameterization with re-
spect to the bounding box) in the memory. We also added
slight perturbations of the parameter values to increase ro-
bustness. For example, we stored 460 prior warping param-
eters for the aortic regurgitation case even though there are
only 93 structures. This way, we avoided a full-range search
of the parameter used for warping.

It is likely to have a cluster of overlapping detection re-
sults close to the ground truth. Among the cluster, we sin-
gled out the detection result with the maximum detection
probability as the output. Even after cluster removal, it is
still possible to have severely overlapping results. If this
happens, we heuristically selected the one with the maxi-
mum peak velocity as the final result.



To quantify the performance of our algorithm, we ex-
tracted two key clinical measurements from the deformable
structure: peak velocity (PV) and velocity time integral
(VTI). The PV is the maximum velocity achieved by the
flowing blood; the VTI is the area under the velocity curve
of one cardiac cycle. We also measure the standard area
overlapping ratio (OR) to gauge the detection accuracy, i.e.,
OR = 2 ∗ area(A ∩ B)/(area(A) + area(B)). Table
3 reports the testing results. In terms of the area overlap-
ping ratio, we achieved above 90% in the median for all
three Doppler structures. We are currently doing clinical
validation and preliminary study shows that the detected re-
sults are within the user variability with respect to a consen-
sus ground truth. We also benchmarked the computational
speed on the same machine and recorded the target of less
than one second. Figure5 displays the detection results.

Mitral inflow Aortic reg. Tricuspid reg.
structure triangle quadrilateral curve

# of training images 153 43 147
# of training structures 698 93 367

# of test images 46 6 28
# of test structures 176 15 53

# of structures/image 2-20 1-7 1-5
mean of PV (m/s) 1.02±0.50 2.90±0.69 2.72± 0.91

med.|dPV | (m/s) 0.035 0.031 0.090
mean|dPV | (m/s) 0.041 0.063 0.194

std. dev.|dPV | (m/s) 0.049 0.098 0.260
mean ofV TI (m) 0.19±0.21 1.04±0.18 0.86±0.36
med.|dV TI| (m) 0.016 0.021 0.059
mean|dV TI| (m) 0.021 0.033 0.133

std. dev.|dV TI| (m) 0.024 0.043 0.218
med. areaOR 90.1% 97.2% 93.0%
mean areaOR 89.3% 96.9% 89.0%

std. dev. areaOR 7.6% 5.2% 9.3%
# of false alarms 0/46 0/6 1/28

# of miss 0/46 2/6 1/28
avg. det. time (ms) 482 672 971

Table 3.Data statistics and detection performance for the Doppler
echocardiogram.

4. Conclusion

We have presented a generic PHD framework for detect-
ing deformable anatomic structure from medical images.
The probabilistic framework integrates evidence from dif-
ferent primitive levels via a progressive detector hierarchy,
consisting of a series of discriminative classifiers. The PHD
framework, if its hierarchy is carefully designed, supports
the two contradictory tasks of fast evaluation and accurate
detection. We have demonstrated the effectiveness of the
framework on various heterogenous tasks of detecting a co-
hort of landmark, triangles, quadrilaterals, and curved from
M-mode and Doppler echocardiograms.
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Figure 5.The detection results (in green/yellow) versus the ground truth (in red). The 1st row: M-mode, the 2rd row: mitral inflow, the 3rd
row: aortic regurgitation and the last column: tricuspid regurgitation.


